Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.

Identifieur interne : 000152 ( Main/Exploration ); précédent : 000151; suivant : 000153

Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.

Auteurs : Sarah Jeffress [Australie] ; Kiruba Arun-Chinnappa [Australie] ; Ben Stodart [Australie] ; Niloofar Vaghefi [Australie] ; Yu Pei Tan [Australie] ; Gavin Ash [Australie]

Source :

RBID : pubmed:32469865

Descripteurs français

English descriptors

Abstract

Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.

DOI: 10.1371/journal.pone.0227396
PubMed: 32469865
PubMed Central: PMC7259788


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.</title>
<author>
<name sortKey="Jeffress, Sarah" sort="Jeffress, Sarah" uniqKey="Jeffress S" first="Sarah" last="Jeffress">Sarah Jeffress</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arun Chinnappa, Kiruba" sort="Arun Chinnappa, Kiruba" uniqKey="Arun Chinnappa K" first="Kiruba" last="Arun-Chinnappa">Kiruba Arun-Chinnappa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodart, Ben" sort="Stodart, Ben" uniqKey="Stodart B" first="Ben" last="Stodart">Ben Stodart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaghefi, Niloofar" sort="Vaghefi, Niloofar" uniqKey="Vaghefi N" first="Niloofar" last="Vaghefi">Niloofar Vaghefi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Yu Pei" sort="Tan, Yu Pei" uniqKey="Tan Y" first="Yu Pei" last="Tan">Yu Pei Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ash, Gavin" sort="Ash, Gavin" uniqKey="Ash G" first="Gavin" last="Ash">Gavin Ash</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32469865</idno>
<idno type="pmid">32469865</idno>
<idno type="doi">10.1371/journal.pone.0227396</idno>
<idno type="pmc">PMC7259788</idno>
<idno type="wicri:Area/Main/Corpus">000240</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000240</idno>
<idno type="wicri:Area/Main/Curation">000240</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000240</idno>
<idno type="wicri:Area/Main/Exploration">000240</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.</title>
<author>
<name sortKey="Jeffress, Sarah" sort="Jeffress, Sarah" uniqKey="Jeffress S" first="Sarah" last="Jeffress">Sarah Jeffress</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arun Chinnappa, Kiruba" sort="Arun Chinnappa, Kiruba" uniqKey="Arun Chinnappa K" first="Kiruba" last="Arun-Chinnappa">Kiruba Arun-Chinnappa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stodart, Ben" sort="Stodart, Ben" uniqKey="Stodart B" first="Ben" last="Stodart">Ben Stodart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaghefi, Niloofar" sort="Vaghefi, Niloofar" uniqKey="Vaghefi N" first="Niloofar" last="Vaghefi">Niloofar Vaghefi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Yu Pei" sort="Tan, Yu Pei" uniqKey="Tan Y" first="Yu Pei" last="Tan">Yu Pei Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ash, Gavin" sort="Ash, Gavin" uniqKey="Ash G" first="Gavin" last="Ash">Gavin Ash</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (genetics)</term>
<term>Ascomycota (pathogenicity)</term>
<term>Cell Wall (enzymology)</term>
<term>Citrus (microbiology)</term>
<term>Data Mining (MeSH)</term>
<term>Genome, Fungal (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Multigene Family (genetics)</term>
<term>Secondary Metabolism (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Ascomycota (génétique)</term>
<term>Ascomycota (pathogénicité)</term>
<term>Citrus (microbiologie)</term>
<term>Famille multigénique (génétique)</term>
<term>Fouille de données (MeSH)</term>
<term>Génome fongique (génétique)</term>
<term>Métabolisme secondaire (génétique)</term>
<term>Paroi cellulaire (enzymologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Paroi cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Genome, Fungal</term>
<term>Multigene Family</term>
<term>Secondary Metabolism</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ascomycota</term>
<term>Famille multigénique</term>
<term>Génome fongique</term>
<term>Métabolisme secondaire</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Ascomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Data Mining</term>
<term>Molecular Sequence Annotation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Fouille de données</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32469865</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.</ArticleTitle>
<Pagination>
<MedlinePgn>e0227396</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0227396</ELocationID>
<Abstract>
<AbstractText>Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jeffress</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arun-Chinnappa</LastName>
<ForeName>Kiruba</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stodart</LastName>
<ForeName>Ben</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-3184-7998</Identifier>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vaghefi</LastName>
<ForeName>Niloofar</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Yu Pei</ForeName>
<Initials>YP</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ash</LastName>
<ForeName>Gavin</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0002-6703-8295</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057225" MajorTopicYN="N">Data Mining</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="Y">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="N">Secondary Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32469865</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0227396</ArticleId>
<ArticleId IdType="pii">PONE-D-19-34838</ArticleId>
<ArticleId IdType="pmc">PMC7259788</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Sep;63(9):3548-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9293005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2013 Oct;117(10):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2018 Jan 11;16(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Nov;73(3):855-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 05;478(7369):395-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Jun 30;244(4912):1571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2544994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2014;5(7):722-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25513773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2015 Dec;31(4):421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26674386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Apr 28;12:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob DNA. 2015 Jun 02;6:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Feb 25;10:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2008 May;53(5):287-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18347798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(4):1008-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21696466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14):2202-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 1;27(7):1017-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21330290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2001 Sep;85(9):1013-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30823084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Oct;18(8):1052-1061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27392818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Feb;26(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D604-D610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27915230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Mar 16;46(5):2699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29425356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Aug 15;33(16):2583-2585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28398459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2016 Jan;120(1):26-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26693682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(3):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24929298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2020 Apr;33(4):576-579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32013763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014;3:e01355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jul 03;8(6):2044-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27289099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Apr;16(3):262-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25099378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):619-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28164301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 21;6:872</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26557126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2004 Oct;94(10):1056-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Oct;25(10):1314-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Nov 28;33(20):6494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 14;338(5):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Aug;18(8):849-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16134897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jul 1;68(Pt 7):802-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 May;64(3):755-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2017 Apr 12;18(1):214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28403817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Jul;10(7):1421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2016 May;90:24-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1990;24:579-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2150906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2010 May;397(2):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):664-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Mycol. 2017 Jun;87:1-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28373739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Feb;9(2):e1003177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23459172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Aug;38(8):953-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 22;17(1):953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27875982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2011 Sep;Chapter 6:Unit 6.12.1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 23;9:392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5459-E5466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29844193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2014 Jan 24;15(2):284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jan;3(1):41-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jan 1;30(1):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23732276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Jan 1;7(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Nov;154(Pt 11):3556-3566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011 Feb 15;2:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21326234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 1982 May 22;78(2):125-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7099243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Aug;14(8):988-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11497471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Aug 18;11:431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20718988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Apr;20(4):459-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17427816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 May;17(5):467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Feb;71(4):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Dec 4;51(5):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2960455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2017 Jul;5(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28721856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Feb;12(2):123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Apr 23;19(1):279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29685100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2018 Oct 25;7(16):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30533739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 09;5:3745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24811710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1965 Feb;11:57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14290960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:233-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jun 15;68(13):3427-3440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28633330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Jan;18(1):75-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26913498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jun;99(6):721-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jan;19(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Jan;93(1):191-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21691787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25199790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2020 Feb;33(2):135-137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31577163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2003 Sep;87(9):1102-1106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30812825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:427-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25001456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):932-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Feb 01;12(2):e1005435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 May;44(5):444-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 26;10(10):e0140829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26501966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17594-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Aug 26;5:4686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2012 May;96(5):629-634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jun 21;3(6):959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Apr;17(3):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Apr;60(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 May;14(5):675-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11332732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Apr;16(4):360-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e29906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fortschr Chem Org Naturst. 1987;52:1-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3325378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Feb 16;4:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):493-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29771380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2018 Mar 29;9:288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29651243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(5):e1002711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Jeffress, Sarah" sort="Jeffress, Sarah" uniqKey="Jeffress S" first="Sarah" last="Jeffress">Sarah Jeffress</name>
</noRegion>
<name sortKey="Arun Chinnappa, Kiruba" sort="Arun Chinnappa, Kiruba" uniqKey="Arun Chinnappa K" first="Kiruba" last="Arun-Chinnappa">Kiruba Arun-Chinnappa</name>
<name sortKey="Ash, Gavin" sort="Ash, Gavin" uniqKey="Ash G" first="Gavin" last="Ash">Gavin Ash</name>
<name sortKey="Ash, Gavin" sort="Ash, Gavin" uniqKey="Ash G" first="Gavin" last="Ash">Gavin Ash</name>
<name sortKey="Stodart, Ben" sort="Stodart, Ben" uniqKey="Stodart B" first="Ben" last="Stodart">Ben Stodart</name>
<name sortKey="Tan, Yu Pei" sort="Tan, Yu Pei" uniqKey="Tan Y" first="Yu Pei" last="Tan">Yu Pei Tan</name>
<name sortKey="Vaghefi, Niloofar" sort="Vaghefi, Niloofar" uniqKey="Vaghefi N" first="Niloofar" last="Vaghefi">Niloofar Vaghefi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32469865
   |texte=   Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32469865" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020